EXPANSION OF AN IDEALLY PLASTIC CYLINDRICAL
SHELL IN RESPONSE TO DETONATION PRODUCTS

V. A. Odintsev, V. V. Selivanov, UDC 539.374.1
and L. A. Chudov

A numerical solution is presented for the nonlinear differential equation for the one-dimen-
sional motion of an ideally plastic incompressible shell subject to pressure from a uniformly
expanding gas. The stress distribution in the shell and the law of motion are derived. The
failure radius is discussed.

There are various papers [1-5] on the behavior of an ideally plastic incompressible shell subject to
pressure from detonation products; the state of strain is complex, and there are tension and compression
zones, for which relationships have been derived to define the failure radius. There is no study in [1-5] of
the kinematics and energy redistribution.

We consider the planar deformation of a cylindrical shell (Fig. 1) in response to products obeying
the law

pV* = const (1)
where p and V are pressure and specific volume.

The stresses oy, 0y, and oy are principal ones. The internal and external initial radii are a, and
by, while the current ones are a and b.

We assume that the shell material is incompressible and define the integral of the equation of con-
tinuity in the form

v=ada/r (2)

where r is an Euler coordinate, v is the radial velocity of a particle, and d =da/ dt is the speed of the
internal surface.

We substitute (2) and the derivatives 5v/6t and &v/9r inthe Euler equation

o " E™ ds, Gy — S,
To(‘a?+”'ar>= T
where v, is the density and used the plasticity condition
Sy — 6, = RY 3)
where Y is the dynamic yield point to get
ds, nY aé - a2 a2d?
ar 1 +To( r _T> )

Here & =d*a/dt? is the acceleration of the internal surface.

In (3), n =1 if the St. Venant plasticity condition.applies, and w =2/V3 if the Mises plasticity condition
applies (the deformation is planar, o, =(o.+0y)/2].
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We integrate (4) with respect to r from g up to the current value r and use the boundary condition:
cr=—pandr=aq to get

242 32
6= —p+n¥ I+ Yo (el + @) In -+ 1o G — ) (6)
We use the external boundary condition ¢,.=0 and r =b to get
oy s b 242 i
—p+ ¥ a4 yo(ad 4t 2 ¢ 70(.‘;;_2__;*_):0 6)
Let py = poDz/S be the pressure of the instantaneous detonation, with p, the explosive density and D
the detonation rate. The condition for incompressibility is
b2 g2 = boz — aoz
and then the law of equilibrium expansion (1) takes the form
P = po(ao/a)* (7)

where we introduce the dimensionless parameters

r_ 8 r— b ' _B_ S S
a_“bo’ b—bo’ p_PoD2’ Y—'poD2
Y R R %

C=7 U= V=7 *=73 -

to get the nonlinear second-order differential equation
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d=Bi*+C,B=12atm (H/a)—a/2H In(H/a)— 1/a ®)

o . C = polao/a)®/yaln (H [a) —xY/ay, H= (1 —a’ + a?)'
. S = £
™ \_{_ Here and subsequently the primes to the dimensionless param-
eters are omitted.
a.5 The initial conditions are
\ \W'/
\N a(0)=a0, d(O)ZO
, =~ Equation (8) was solved via a standard program using the Runge —
£ - Kutta method with various filling factors o =m/(m+ M), where m is the
g a2/a mass of explosive and M is the mass of the shell; the various plasticity
1.4 1.25 1.4 conditions were employed with different dynamic yield points. We
Fig. 5 assumed that k=3 in the expansion law.

Figure 2 shows the distribution of the tangential stresses over

TABLE 1 the thickness for various instants, where « =0.2, Y=10kbar, » =

Shetl a1 b b - 2/V3, £ =(r—a)/(b—a); lines 1-4 correspond to dimensional times

et matena oo 1 of 0, 1.7, 2.5, 3.2.
Steel 45 Kh quenched| 1.25 15 o A shell subject to an explos.lve load has two zones; a zone ad-
Steel 35 1.4 2.0 joining the outer surface has a mixed state of stress (op < 0, o 0> 0)
AT 0 VCh-60-2 e 28 while the internal zone has a state of nonuniform hydrostatic compres-

sion. The zone boundary (o = 0)moves as the shell expands and the
pressure falls; Fig. 3 shows the motion of the internal and external
boundaries (lines 1 and 4), and also that of the surfaces 0y =0 and
or=0y (lines 2 and 3) for o =0.4, Y =10 kbar, and the St. Venant
plasticity condition.

As the stress distribution in thickness can be considered as linear to 7% at any instant, we have -
G, = —pb—1)/h ce=%xY —p(b—1)/h
‘where h is shell thickness.
The following is the depth of the stretched zone reckoned from the outer surface:
y="hY/p=1yl})
From (7) we get
y =LY (@ /a0 po

It is found [1] that failure in such a shell occurs when the outer zone has propagated through the entire
thickness; the failure radius is defined by

as = ao (po / Y)'* (9)

It has been assumed inexplicitly in the derivation that the shell fails in the stretched zone by brittle
tear.

If we assume that simultaneously the compressed zone fails by shear, so that failure has already oc-
curred when the zone boundary arrives, the failure condition will be that the normal stresses in the sheared
areas are zero, which corresponds to a state of pure shear:

~ Go=—0y 0,=0,0=(0, +0g+0,)/3=0
An analogous conception is given in [3].
In that case, the failure radius is defined by
a® = ao(2py [ YVt (10)
We find that a°/af =1.12 for py, Y and k = 3.

Equations (9) and (10) do not incorporate the plastic properties of the material, _such as the strain 6,
shrinkage ¥, and so on.
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Photographs have been taken of shells exploded in this way, and these show that one has to distinguish
the radius b, at which cracks arise at the outer surface and the failure radius br as recorded from the
breakthrough of detonation products. Table 1 gives the relative values for these quantities (shell dimensions
a; =10 mm, b, =13.5 mm, length ;=130 mm, ay/by=0.74, explosive TG 50/50).

The relative failure radius is 3.3 for copper shells (a,/b, =0.83).

Figure 4 shows the mean relative velocity (v)/ D as a function of the relative radius a /g, for various
«; the family of curves 1-4 corresponds to o =0.3, 0.2, 0.1, 0.05, and the continuous monotonic lines repre-
sent results from (8) for the St. Venant plasticity condition and Y=10 kbar. The dot-and-dash lines show
curves for an ideally plastic shell derived from

By o ap \4 2Y a Yz
T“{su—a) [1_(7‘)} ~ oDt ]“‘E} an
The dot-and-dash lines with points give results for the same formula with Y =0:
(v _ o ag \4 ]’,2
o= la ) (=1 (12)

Equation (12) does not incorporate the energy loss due to irreversible plastic deformation and gives
high values.

Equation (11) gives underestimates for the velocity for o small, because it does not incorporate the
actual stress distribution in the thickness.

The effects of the compressibility and elasticity on the integral characteristics have been examined by
numerical integration of the equations of niotion for an elastoplastic compressible shell with the same load-
ing conditions (equilibrium expansion); we used the finite-difference scheme of [6].

Figure 4 shows (v)/D= f(a/ay) for a shell with the elastic characteristics G=0.81-10° kbar and
K =1.75 - 10° kbar, with Y= 10 kbar and parameters for the fault compressibility in accordance with [7] for
two filling factors (solid lines, nonmonotonic). It is clear that the compressibility and elasticity have only
small effects on the final velocities under these conditions,

The energy redistribution for an incompressible shell is indicated by Fig. 5, where
E =E[Eyy W =W/E,, E))=Ep | E,

with E; and E the initial and current internal energies of the detonation products, W the kinetic energy of the
shell, and Ep, the energy of plastic shape change. The graph has been constructed in the form

E +W +E,)/ =1

Figure 5 shows results corresponding to Y = 10 kbar (solid line) and Y =20 kbar (broken line). In both
cases, « =0.05, and the St. Venant plasticity condition was used.

It has been proposed [3] that thermoplastic shear may occur in such a shell, so we estimated the tem-
perature arising from the plastic deformation. The rise was not more than 150-200° for a/a =15 and
10-20 kbar for the yield point, which should not substantially affect the properties. This estimate does not
incorporate the direct heat transfer to the shell from the detonated products.
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